欢迎来到华中农业大学资源与环境学院现在时间是:
访问旧版
当前所在位置: 首页 -- 师资队伍 -- 师资队伍(按职称) -- 正文
教授
胡红青
发布人:发布时间:2016-05-19

姓名:胡红青   职称:教授

政治面貌:中共党员

E-mailhqhu@mail.hzau.edu.cn;hqhu04@126.com;13871289448@139.com

研究方向:土壤化学与矿物学、植物营养、土壤肥力、土壤环境修复

个人简介


    1966年10月生,1988、1991、1997年在华中农业大学获得土壤农化专业学士、土壤学硕士和博士学位;1991年7月留校任教,2003年11月受聘教授,2004年4月被聘为博士生导师,2005年入选教育部新世纪优秀人才支持计划,2007年12月获聘三级岗。


进修与留学经历:

    2011年7月和2016年9月 德国Juelich农业圈研究所2次邀请讲学;2010年6月– 7月,美国Texas A & M大学合作研究;2005年5月和2007年10月韩国忠北国立大学2次邀请讲学;2001年8月-2002年8月 西澳大利亚大学访问学者;2000年1月- 8月 意大利Napoli大学合作研究。


社会兼职:

    Journal of Environmental Sciences编委(2013-)、Agricultural Sciences编委(2009-)、Journal of Food, Agriculture and Environment编委(2004-2014)、植物营养与肥料学报编委(2004- )、Journal of Agriculture,Food and Development主编(2015-)。

    中国土壤学会土壤环境专业委员会委员(2004-)、土壤肥力与肥料专业委员会委员(2004-2012)、中国环境科学学会高级会员(2014-)、中国植物营养与肥料学会会员、武汉市海绵城市建设专家委员会委员(2016-)、武汉市环保局城市土壤污染调查评审专家(2013-)、国家自然科学基金委员会项目通讯评审专家(2004-)、科技部国际科技合作项目评审专家(2009-)等。



获奖:

2005 教育部自然科学二等奖、湖北省自然科学三等奖

2000 湖北省科技进步三等奖

1995 教育部科技进步二等奖

土壤肥料学湖北省精品课程主持人(2010-2014)、参加人(2015-)。

土壤化学校级优秀课程主持人。农业资源与环境专业综合改革湖北省教改项目(2014-2016)主持人。土壤肥料学校级优秀团队负责人。

指导湖北省优秀博士学位论文1篇、省级优秀大学生科技成果8项。

副主编教材《环境土壤学》;参编教材《土壤学》、《土壤肥料学》、《土壤化学》。

校教书育人先进个人(2010)、优秀研究生导师(2010)、师德先进个人(2014)、教学质量一等奖(2015)。

农村与生态环境学报、农业环境科学学报、应用生态学报、植物营养与肥料学报、Journal of Integrative Agriculture等优秀审稿人。


教学、科研:

主讲课程:土壤学、土壤肥料学、土壤化学、农业环境学、土壤学实习、资源调查与评价实习、农业资源与环境专业导论、学术道德规范、土壤与环境等。


主要主持课题:

可变电荷与恒电荷土壤根际表面化学特性,NSFC, 2004-2006

不同土壤胶体和矿物上Bt蛋白的吸附与残留,博士点基金, 2006-2008

转Bt作物的根际效应与Bt蛋白残留,教育部新世纪优秀人才支持计划, 2006-2008

土壤和矿物对Bt蛋白的吸附机理及影响因素,NSFC, 2007-2009

活化磷矿粉对农田土壤重金属的固定研究与示范,863课题, 2007-2010

三峡库区消落带土壤的性状变化,科技部水专项, 2010-2012

活化磷矿粉对重金属的钝化机理,教育部博士点基金,2010-2012

重金属-磷-有机配体的相互作用及其环境意义,NSFC, 2011-2013

蓖麻对土壤铜的植物修复与土壤管理,教育部专项基金, 2012-2013

重金属污染的化学钝化与应用技术,863课题, 2012-2015

三峡库区小江流域水体富营养化控制,水利部, 2014-2016

蓖麻对铜的富集机理和影响因素,NSFC, 2014-2017

中南地区土壤重金属Cd, Ni和As的钝化与调控,国家科技支撑计划, 2015-2019

再生稻高产土壤培肥与耕作,国家重点研发计划-粮食丰产工程, 2016-2020


发表论文:

已发表论文264篇,其中SCI收录90余篇。近年发表的SCI论文主要有:

1.Influence of phenolic acids on phosphorus mobilization in acidic and calcareous soils. Plant Soil, 2005. 268(1):173-180

2.Effect of selected organic acids on cadmium sorption by variable- and permanent-charge soils. Pedosphere, 2007. 17(1): 117-123

3.Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by soil minerals: Effects of organic acid ligands. Applied Clay Science, 2007. 37, 201-206.

4.Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by some Chinese soils: effects of organic acid ligands addition. Plant and Soil, 2007. 296: 35-41.

5.Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by minerals: effects of inorganic salts. European Journal of Soil Science.2008.59: 216-221

6.Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. Kustaki by clay minerals. Applied Surface Sci., 2009.255(8):4551-4557

7. Influences of low molar mass organic acids on the adsorption of Cd2+and Pb2+by goethite and montmorillonite. Appl Clay Sci, 2010. 49 (3): 281-287

8. Mechanism of lead immobilization by oxalic-activated phosphate rocks. J Environ Sci. 2012. 24(5): 919-925

9. Sorption of the toxin of Bacillus thuringensis subsp. Kurstaki by soils: effects of iron and aluminum oxides. European Journal of Soil Science. 2012. 63(5): 565-570

10. Impacts of inorganic ions and temperature on lead adsorption onto variable charge soils. Catena, 2013.109:103-109

11. Sorption of humic acid on Fe oxides, bacteria, and Fe oxide-bacteria composites. J Soils Sediments.2014.14: 1378-1384

12. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Journal of Environmental Sciences. 2015. 28(1): 64-73

13. Immobilization and phytotoxicity of Pb in contaminated soil amended with gamma-polyglutamic acid, phosphate rock, and gamma-polyglutamic acid-activated phosphate rock. Environmental Science and Pollution Research. 2015. 22(4): 2661-2667

14. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes. Pedosphere, 2015. 25(3): 405-411.

15. Dual color fluorescence quantitative detection for mercury in soil with grapheme oxide and dye-labeled nucleic acids. Analytical Methods. 2015. 7(9): 3827-3832

16. Adsorption of phosphate on pure and humic acid coated ferrihydrite. Journal of Soils and Sediments.2015.15(7):1500-1509

17. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress. International Journal of Phytoremediation. 2016. 18(1): 33-40

18. Enhanced accumulation of Cd in castor (Ricinus Communis L.) by soil-applied chelators. International Journal of Phytoremediation. 2016. 18(7): 664-670

19. Effects of phosphate and citric acid on Pb adsorption by red soil colloids. Environmental Progress and Sustainable Energy. 2016. 35(4): 969-974

20. Phosphate adsorption on uncoated and humic acid-coated iron oxides. Journal of Soil and Sediments. 2016.16(7): 1911-1920

21. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environmental Technology. 2016. 37(21):2679-2686

22. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ Sci Pollut Res. 2016. 23: 15532-15543

23. Chemical immobilization of Pb, Cu and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ Sci Pollut Res. 2016. 23: 16845-16856

24. Adsorption and intercalation of low and medium molar mass chitosans on/in the sodium montmorillonite. International J Biological Macromolecules. 2016.92:1191-1196

25. Adsorption of Cu2+on montmorillonite and chitosan-montmorillonite composite toward acetate ligand and the pH dependence. Water, Air & Soil Pollution. 2016. 227(10): 1-10

26. Efficiency of several leaching reagents on removal of Cu, Pb, Cd and Zn from highly contaminated paddy soil. Environ Sci Pollut Res. 2016. 23(22): 23271-23280

27. Accumulation and distribution of copper in castor bean (Ricinus communis L.) callus cultures: In vitro. Plant Cell, Tissue and Organ Culture. 2016. 128: 177-186

28. Increasing molecular structural complexity and decreasing nitrogen availability depress the mineralization of organic matter in subtropical forest soils. Soil Biology and Biochemistry. 2017. 108: 91-100

29. Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite : kinetic, thermodynamic and equilibrium studies. Applied Clay Science. 2017. 143:320-326

30. The effect of pH on the bonding of Cu2+and chitosan- montmorillonite composite. Intl. J Biol Macromolecules. 2017. 103: 751-757

31. Effects of sulphur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil. Environ Sci Pollut Res. 2017. 24(35): 27476-27483

32. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. J Environ Manage. 2017. 200:304-311

33. Influence of phosphorus fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.).Environ Sci Pollut Res. 2018.25(1):115-123

34. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ Sci Pollut Res. 2018, 25(12): 11875-11883

35. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphates as amendments. Chemosphere. 2018. 194: 579-587

36. Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: Extraction techniques and adsorption mechanism. Bull Environ Contamin & Toxicol. 2018, 100(5): 727-732

37. Identifying the characterization of functional groups and the influence of synthetic chelators and their effects on Cd availability and microbial biomass carbon in Cd contaminated soil. Intl J Phytoremed. 2018, 20(2): 168-174

38. Effects of exogenous sulfur on the growth and Cd uptake of Chinese cabbage (Brassuca campestris spp. Pekinensis) in Cd-contaminated soil. Environ Sci Pollut Res. 2018, 25: 15823-15829

39. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J Soils Sediments. 2018, 18(9): 2948-2959

40. Efficiency of C3 and C4 plant derived-biochar for Cd mobility, nutrient cycling and microbial biomass in contaminated soil. Bull Environ Contamin & Toxicol. 2018, 100(6): 834-838

41. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil. Chemosphere. 211: 632-639

42. Comparative efficiency of rice husk derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by chinese cabbage in highly contaminated soil. Int J Phytoremediat. 2018, 20(12): 1221-1228

43. Biochars immobilize Pb and Cu in naturally contaminated soil. Environ Engineering Sci. 2018, 35(12): 1349-1360

44. Lateral and longitudinal variation in phosphorus fractions in surface sediment and adjacent riparian soil in the Three Gorges Reservoir, China. Environ Sci Pollut Res. 2018, 25(31): 31262-31271

45. Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage and improved biochemical properties in naturally co-contaminated soil. J Soils Sediments. 2019. 19: 2381-2391

46. Co-pyrolysis biochar derived from rape straw and phosphate rock: carbon retention, aromaticity and Pb removal capacity. Energy and Fuels. 2019, 33(1): 413-419

47. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. J Environ Manage. 2019, 237: 5-14

48. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bullet Environ Contamin Toxico. 2019,https://doi.org/10.1007/s00128-019-02573-6

49. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. Journal of Hazardous Materials. 2019, 371: 191-197.

50. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils. Ecotoxicology and Environmental Safety. 2019, 174: 401-407

51. Influence of low molecular weight organic ligands on the sorption of heavy metals by soil constituents: A review. Envir Chem Letters. 2019, Doi: 10.1017/s10311-019-00881-1

52. Two years impacts of rapeseed residue and rice straw biochar on Pb and Cu immobilization and revegetation of naturally co-contaminated soil. Applied Geochem. 2019. Doi: 10.1016/j.apgeochem.2019.04.011


研究生培养

已毕业硕士56人(留学生2人),博士20人(留学生6人)。在读硕士生9人,博士生7人(留学生1人)。

上一篇:徐芳森

下一篇:胡承孝