欢迎来到华中农业大学资源与环境学院现在时间是:
访问旧版
当前所在位置: 首页 -- 师资队伍 -- 师资队伍(按职称) -- 正文
教授
胡红青
发布人:发布时间:2016-05-19

姓名:胡红青   职称:教授

政治面貌:中共党员

E-mailhqhu@mail.hzau.edu.cn;hqhu04@126.com;13871289448@139.com

研究方向:土壤化学与矿物学、植物营养、土壤肥力、土壤环境修复

个人简介

1966年10月生,1988、1991、1997年在华中农业大学获得土壤农化专业学士、土壤学硕士和博士学位;1991年7月留校任教,2003年11月受聘教授,2004年4月被聘为博士生导师,2005年入选教育部新世纪优秀人才支持计划,2007年12月获聘三级岗。

进修与留学经历:

    2011年7月和2016年9月 德国Juelich农业圈研究所2次邀请讲学;2010年6月– 7月,美国Texas A & M大学合作研究;2005年5月和2007年10月韩国忠北国立大学2次邀请讲学;2001年8月-2002年8月 西澳大利亚大学访问学者;2000年1月- 8月 意大利Napoli大学合作研究。

社会兼职:

Journal of Environmental Sciences编委(2013-)、Agricultural Sciences编委(2009-)、Journal of Food, Agriculture and Environment编委(2004-2014)、植物营养与肥料学报编委(2004- )、Journal of Agriculture,Food and Development主编(2015-2022)、土壤通报编委(2021-)、《Agriculture-Basel》编委(2024-)、《可持续发展》编委(2015-)。

中国土壤学会土壤环境专业委员会委员(2004-2024)、土壤肥力与肥料专业委员会委员(2004-2012)、中国环境科学学会高级会员(2014-)、中国植物营养与肥料学会会员、武汉市海绵城市建设专家委员会委员(2016-)、武汉市环保局城市土壤污染调查评审专家(2013-)、国家自然科学基金委员会项目通讯评审专家(2004-)、科技部国际科技合作项目评审专家(2009-)、国家重点研发计划评审专家(2019-)、湖北省科技特派员(2023-)、武汉市园林科研院学术顾问(2024-)、湖北省第三次全国土壤普查外业专家(2022-2024)等。


获奖:

2017 湖北省教学成果一等奖

土壤肥料学湖北省精品课程主持人(2010-2014)、参加人(2015-)。

土壤化学校级优秀课程主持人。农业资源与环境专业综合改革湖北省教改项目(2014-2016)主持人。土壤肥料学校级优秀团队负责人。

指导湖北省优秀博士学位论文1篇、省级优秀大学生科技成果8项。

副主编教材《环境土壤学》;主编《农田土壤重金属污染钝化修复技术与实践》;参编教材《土壤学》、《土壤肥料学》、《土壤化学》、《土壤污染修复》;参编其他专著、会议论文集5部。

校教书育人先进个人(2010)、优秀研究生导师(2010)、师德先进个人(2014)、教学质量一等奖(2015)。

农村与生态环境学报、农业环境科学学报、应用生态学报、植物营养与肥料学报、Journal of Integrative Agriculture等优秀审稿人。

2005 教育部自然科学二等奖、湖北省自然科学三等奖

2000 湖北省科技进步三等奖

1995 教育部科技进步二等奖

土壤肥料学湖北省精品课程主持人(2010-2014)、参加人(2015-)。

土壤化学校级优秀课程主持人。农业资源与环境专业综合改革湖北省教改项目(2014-2016)主持人。土壤肥料学校级优秀团队负责人。

指导湖北省优秀博士学位论文1篇、省级优秀大学生科技成果8项。

副主编教材《环境土壤学》;参编教材《土壤学》、《土壤肥料学》、《土壤化学》。

校教书育人先进个人(2010)、优秀研究生导师(2010)、师德先进个人(2014)、教学质量一等奖(2015)。

农村与生态环境学报、农业环境科学学报、应用生态学报、植物营养与肥料学报、Journal of Integrative Agriculture等优秀审稿人。


教学、科研:

主讲课程:土壤学、土壤肥料学、土壤化学、农业环境学、土壤学实习、资源调查与评价实习、农业资源与环境专业导论、学术道德规范、土壤与环境等。


主要主持课题:

可变电荷与恒电荷土壤根际表面化学特性,NSFC, 2004-2006

不同土壤胶体和矿物上Bt蛋白的吸附与残留,博士点基金, 2006-2008

转Bt作物的根际效应与Bt蛋白残留,教育部新世纪优秀人才支持计划, 2006-2008

土壤和矿物对Bt蛋白的吸附机理及影响因素,NSFC, 2007-2009

活化磷矿粉对农田土壤重金属的固定研究与示范,863课题, 2007-2010

三峡库区消落带土壤的性状变化,科技部水专项, 2010-2012

活化磷矿粉对重金属的钝化机理,教育部博士点基金,2010-2012

重金属-磷-有机配体的相互作用及其环境意义,NSFC, 2011-2013

蓖麻对土壤铜的植物修复与土壤管理,教育部专项基金, 2012-2013

重金属污染的化学钝化与应用技术,863课题, 2012-2015

三峡库区小江流域水体富营养化控制,水利部, 2014-2016

蓖麻对铜的富集机理和影响因素,NSFC, 2014-2017

中南地区土壤重金属Cd, Ni和As的钝化与调控,国家科技支撑计划, 2015-2019

再生稻高产土壤培肥与耕作,国家重点研发计划-粮食丰产工程, 2016-2020

鄂东南重金属污染土壤修复研究与示范,湖北省地质局,2020-2022

淅川县果园土壤肥力调查与生物有机肥应用,淅川县农业技术推广中心,2021-2023

长江中下游坡耕地红黄壤与中低产稻田产能提升技术模式与应用,国家重点研发计划,2021-2025

武汉市园林土壤微生物专家工作站,武汉市园林科研院,2021-2023

稻油轮作制重金属污染微生物组控制机理,NSFC-重点联合基金,2022-2025

特大城市群工业聚集区大气-土壤-地下水多介质复合污染综合防控关键技术与示范,国家重点研发计划,2023-2027

武汉市东西湖区土壤普查剖面采样及污染修复监测,东西湖区农业农村局,2023-2025

荆门市东宝区第三次土壤普查成果汇总,荆门市东宝区农业农村局,2024-2025

漳河杨树港流域稻-油轮作系统养分管理与面源污染消减研究,荆门市科技局,2025-2026


发表论文:

已发表论文356篇,其中SCI收录150余篇。近年发表的SCI论文主要有:

1.Influences of low molar mass organic acids on the adsorption of Cd2+and Pb2+by goethite and montmorillonite. Appl Clay Sci, 2010. 49 (3): 281-287

2. Mechanism of lead immobilization by oxalic-activated phosphate rocks. J Environ Sci. 2012. 24(5): 919-925

3. Sorption of the toxin of Bacillus thuringensis subsp. Kurstaki by soils: effects of iron and aluminum oxides. European Journal of Soil Science. 2012. 63(5): 565-570

4. Impacts of inorganic ions and temperature on lead adsorption onto variable charge soils. Catena, 2013.109:103-109

5. Sorption of humic acid on Fe oxides, bacteria, and Fe oxide-bacteria composites. J Soils Sediments.2014.14: 1378-1384

6. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Journal of Environmental Sciences. 2015. 28(1): 64-73

7. Immobilization and phytotoxicity of Pb in contaminated soil amended with gamma-polyglutamic acid, phosphate rock, and gamma-polyglutamic acid-activated phosphate rock. Environmental Science and Pollution Research. 2015. 22(4): 2661-2667

8. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes. Pedosphere, 2015. 25(3): 405-411.

9. Dual color fluorescence quantitative detection for mercury in soil with grapheme oxide and dye-labeled nucleic acids. Analytical Methods. 2015. 7(9): 3827-3832

10. Adsorption of phosphate on pure and humic acid coated ferrihydrite. Journal of Soils and Sediments.2015.15(7):1500-1509

11. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress. International Journal of Phytoremediation. 2016. 18(1): 33-40

12. Enhanced accumulation of Cd in castor (Ricinus Communis L.) by soil-applied chelators. International Journal of Phytoremediation. 2016. 18(7): 664-670

13. Effects of phosphate and citric acid on Pb adsorption by red soil colloids. Environmental Progress and Sustainable Energy. 2016. 35(4): 969-974

14. Phosphate adsorption on uncoated and humic acid-coated iron oxides. Journal of Soil and Sediments. 2016.16(7): 1911-1920

15. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environmental Technology. 2016. 37(21):2679-2686

16. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ Sci Pollut Res. 2016. 23: 15532-15543

17. Chemical immobilization of Pb, Cu and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ Sci Pollut Res. 2016. 23: 16845-16856

18. Adsorption and intercalation of low and medium molar mass chitosans on/in the sodium montmorillonite. International J Biological Macromolecules. 2016.92:1191-1196

19. Adsorption of Cu2+on montmorillonite and chitosan-montmorillonite composite toward acetate ligand and the pH dependence. Water, Air & Soil Pollution. 2016. 227(10): 1-10

20. Efficiency of several leaching reagents on removal of Cu, Pb, Cd and Zn from highly contaminated paddy soil. Environ Sci Pollut Res. 2016. 23(22): 23271-23280

21. Accumulation and distribution of copper in castor bean (Ricinus communis L.) callus cultures: In vitro. Plant Cell, Tissue and Organ Culture. 2016. 128: 177-186

22. Increasing molecular structural complexity and decreasing nitrogen availability depress the mineralization of organic matter in subtropical forest soils. Soil Biology and Biochemistry. 2017. 108: 91-100

23. Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite : kinetic, thermodynamic and equilibrium studies. Applied Clay Science. 2017. 143:320-326

24. The effect of pH on the bonding of Cu2+and chitosan- montmorillonite composite. Intl. J Biol Macromolecules. 2017. 103: 751-757

25. Effects of sulphur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil. Environ Sci Pollut Res. 2017. 24(35): 27476-27483

26. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. J Environ Manage. 2017. 200:304-311

27. Influence of phosphorus fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.).Environ Sci Pollut Res. 2018.25(1):115-123

28. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ Sci Pollut Res. 2018, 25(12): 11875-11883

29. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphates as amendments. Chemosphere. 2018. 194: 579-587

30. Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: Extraction techniques and adsorption mechanism. Bull Environ Contamin & Toxicol. 2018, 100(5): 727-732

31. Identifying the characterization of functional groups and the influence of synthetic chelators and their effects on Cd availability and microbial biomass carbon in Cd contaminated soil. Intl J Phytoremed. 2018, 20(2): 168-174

32. Effects of exogenous sulfur on the growth and Cd uptake of Chinese cabbage (Brassuca campestris spp. Pekinensis) in Cd-contaminated soil. Environ Sci Pollut Res. 2018, 25: 15823-15829

33. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J Soils Sediments. 2018, 18(9): 2948-2959

34. Efficiency of C3 and C4 plant derived-biochar for Cd mobility, nutrient cycling and microbial biomass in contaminated soil. Bull Environ Contamin & Toxicol. 2018, 100(6): 834-838

35. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil. Chemosphere. 211: 632-639

36. Comparative efficiency of rice husk derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by chinese cabbage in highly contaminated soil. Int J Phytoremediat. 2018, 20(12): 1221-1228

37. Biochars immobilize Pb and Cu in naturally contaminated soil. Environ Engineering Sci. 2018, 35(12): 1349-1360

38. Lateral and longitudinal variation in phosphorus fractions in surface sediment and adjacent riparian soil in the Three Gorges Reservoir, China. Environ Sci Pollut Res. 2018, 25(31): 31262-31271

39. Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage and improved biochemical properties in naturally co-contaminated soil. J Soils Sediments. 2019. 19: 2381-2392

40. Co-pyrolysis biochar derived from rape straw and phosphate rock: carbon retention, aromaticity and Pb removal capacity. Energy and Fuels. 2019, 33(1): 413-419

41. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. J Environ Manage. 2019, 237: 5-14

42. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bullet Environ Contamin Toxico. 2019,102: 567-572. https://doi.org/10.1007/s00128-019-02573-6

43. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. Journal of Hazardous Materials. 2019, 371: 191-197.

44. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils. Ecotoxicology and Environmental Safety. 2019, 174: 401-407

45. Influence of low molecular weight organic ligands on the sorption of heavy metals by soil constituents: A review. Envir Chem Letters. 2019,17(3): 1271-1280. Doi: 10.1017/s10311-019-00881-1

46. Two years impacts of rapeseed residue and rice straw biochar on Pb and Cu immobilization and revegetation of naturally co-contaminated soil. Applied  Geochem. 2019. 105:97-104. Doi: 10.1016/j.apgeochem.2019.04.011

47. Sorption and immobilization of Cu and Pb in a red soil (Ultisol) after different long-term fertilizations. Environ Sci Pollut Res. 2019. 26: 1716-1722

48. Effects of in situ phytoremediation of heavy metal contaminated soils on microbial diversity and enzyme activities. J Environ Protect Ecol. 2019. 20(1): 74-82

49. Water management of alternate wetting and drying reduces the accumulation of arsenic in brown rice- As dynamic study from rhizosphere soil to rice. Ecotoxicology and Environmental Safety. 2019.

50. Influence of various passivators for nickle immobilization in contaminated soil of China. Envir Engineering Sci. 2019. 36(11): 1396-1403

51. Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acid Ni contaminated soil. J Environ Management. 2019. 259: 109674. Doi:10.1016/j.jenvman.2019.109674

52. Influence of nitrogen forms and application rates on the phytoextraction of copper by castor bean (Ricinus communis L.). Environ Sci Pollut Res. 2020. 27:647-656. Doi: 10.1007/s11356-019-06768-6

53. Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stress. J Environ Sci. 2020. 88: 209-216

54. High-efficiency removal capacities and quantitative sorption mechanism of Pb by oxidized rape straw biochars. Sci. Total Environ. 2020. 699,134262

55. Rice straw, biochar and calcite incorporation enhance nickel (Ni) immobilization in contaminated soil and Ni removal capacity. Chemosphere. 2020. 244: UNSP125418. doi: 10.1016/j.chemosphere.2019.125418

56. Comparative study on adsorption and immobilization of Cd(II) by rape component biomass. Environ Sci & Pollut Res. 2020. 27: 8028-8033

57. Preparation, characterization, and Cd(II) sorption of/on cysteine- montorillonite composites synthesized at various pH. Environ Sci & Pollut Res. 2020. 27: 10599-10606. Doi: 10.1007/s11356-019-07550-4

58. Comparative effects on arsenic uptake between iron (hydro)oxides on root surface and rhizosphere of rice in an alkaline paddy soil. Environ Sci & Pollut Res. 2020. 27: 6995-7004

59. Role of sepiolite for cadmium(Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil. J Environ Manage. 2020. 258: 110020

60. Coupling phytoremediation efficiency and detoxification to access the role of P in the Cu tolerant Ricinus communis L. Chemosphere. 2020. 247:125965. Doi: 10.1016/j.chemosphere.2020.125965

61. Biochar improves the growth performance of maize seedling in response to antimony stress. Water, Air, and Soil Pollution. 2020. 231: 154

62. Efficiency of KOH modified rice straw derived biochar on cadmium mobility, bioaccessibility and bioavailability risk index in red soil. Pedosphere. 2020. 30(6): 874-882

63. Variation of dissolved organic matter and Cu fractions in rhizosphere soil induced by the root activities of castor bean. Chemosphere. 2020. 254: 126800

64. Remediation of Pb, Cd and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry. Sci Total Environ. 2020. 730: 139119

65. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol. Soil & Tillage Res. 2020. 201: 104594

66. Biochar production and characterization as a measure for effective rapeseed residue and rice straw management: an integrated spectroscopic examination. Biomass Conversion and Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00820-z

67. Phosphorus regulates As uptake by rice via releasing As into soil porewater and sequestrating it on Fe plaque. Sci Tot Environ. 2020. 738: 139869

68. The relative contribution of ammonia oxidizing bacteria and archaea to N2O emission from two paddy soils with different fertilizer N sources: A microcosm study. Geoderma. 2020. 375: 114486

69. Long-term green manure application improves soil K availability in red paddy soil of subtropical China. J Soils Sediments. 2020. 21: 63-72. Doi: 10.1007/s11368-020-02768-z

70. Biological-chemical comprehensive effects of goethite addition on nitrous oxide emissions in paddy soils. J Soils Sediments. 2020. 20: 3850-3590

71. Effects of low molecular weight organic acids on Cu accumulation by castor bean and soil enzyme activities. Ecotoxi Environ Safety. 2020. 203: 110983

72. Regulation of soil aggregate size under different fertilization on dissolved organic matter, cellobiose hydrolyzing microbial community and their roles in organic matter mineralization. Sci Tot Environ. 2021. 755: 142595

73. Long-term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality. Plant Soil. 2021. 468(1-2): 459-473

74. Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma. 2021. 385, 114803

75. Spatial variability of the molecular composition of humic acids from subtropical forest soils. J Soils Sediments. 2021. 21: 766-774

76. Cadmium, lead, and zinc immobilization in soil by rice husk biochar in the presence of low molecular weight organic acids. Environ Techno. 2021. Doi: 10.1080/09593330.2021.1883743

77. Comparing effects of ammonium and nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system. J Soils Sediments. 2021. Doi: 10.1007/s11368-021-02938-7

78. Potential of organic and inorganic amendments for stabilizing nickle in acidic soil, and improving the nutritional quality of spinach. Environ Sci Pollut Res. 2021. Doi: 10.1007/s11356-021-14611-0

79. Effect of P/As molar ratio in soil porewater on competitive uptake of As and P in As sensitive and tolerant genotypes. Sci Tot Environ. 2021. 797, 149185

80.Immobilization of cadmium, lead, and zinc in soil by rice husk biochar in the presence of citric acid. Intl J Environ Sci & Techno. 2022. 19(1): 567-580. Doi:10.1007/s13762-021-03185-6

81. Influence mechanisms of iron, aluminum and manganese oxides on the mineralization of organic matter in paddy soil. J Environ Manage. 2022. 301, 113916

82. Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil. Environ Sci Pollut Res. 2022. Doi: 10.1007/s11356-021-17968-4

83. Assessment of goethite modified biochar on the immobilization of cadmium and arsenic and uptake by Chinese cabbage in paddy soil. Archives Agron Soil Sci. 2022. Doi: 10.1080/03650340.2022.2050370

84. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. Sci. Total Environ. 2022. 828, 154494

85. Responses of N2O production and abundances of associated microorganisms to soil profiles and water regime in two paddy soils. Agronomy. 2022. 12, 743

86. The inhibiting effects of organic acids on arsenic immobilization by ferrihydrite: Gallic acid as an example. Chemosphere. 2022. 134286. Doi: 10.1016/j.chemosphere.2022.134286

87. Mineralization of organic matter during the immobilization of heavy metals in polluted soil treated with minerals. Chemosphere. 2022. 301, 134794

88. Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. Sci Tot Environ. 2022. 839: 156285

89. Open innovation web-based platform for evaluation of water quality based on big data analysis. Sustainability, 2022. 14, 8811. Doi: 10.3390/su14148811

90. Effect of phosphorus fertilizer on phytoextraction using Ricinus communis L. in Cu and Cd co-contaminated soil. Intl J Phytoremed. 2022. https://doi.org/10.1080/15226514.2022.21121.44

91. Physiological and growth responses of castor (Ricinus CommunisL) under cadmium stressed environment. J. Appl. Res. Plant. Sci. 2022. 3(2): 242-247

92. Effects of Fe(II) on As(III) oxidation in Fe(II)-As(III) co-oxidation: Limiting and driving roles. J Hazardous Mate. 2023. 447: 130790.

93. Endophytic bacteria in Ricinus communis L.: Diversity of bacterial community, plant-growth promoting traits of the isolates and its effect on Cu and Cd speciation in soil. Agronomy. 2023. 13: 333

94. Efficacy of different amendments and residual effects on nickel toxicity and nutritional quality in wheat/rice continuous system and health risk assessment in Ultisol. Archives of Agronomy and Soil Science. 2023. Doi: 10.1080/03650340.2023.2169280

95. Comparative study on the leaching characteristics of Cd passivated in soils under continuous simulated acid rain. Sustainability, 2023. 15, 6286. Doi:10.3390/su15076286

96. The simultaneous high-effective removal of As(III) and Cd by a modified biochar derived from rice straw. J Environ Chem Engineering, 2023. Doi: 10.1016/j.jece.2023.109874

97. The residual impact of goethite-modified biochar on cadmium and arsenic uptake by maize in contaminated soil. Soil Sediment Contamin: An International J. 2023. Doi: 10.1080/15320383.2023.2208673

98. Carbon-iron coupling reduced N2O emissions via promoting the conversion to N2 in paddy soils. European Journal of Soil Science. 2023. 74(4). DOI:10.1111/ejss.13404

99. Renewable and efficient removal of arsenic from contaminated water by modified biochars derived from As-enriched plant. Bioresource Technology, 2023. https://doi.org/10.1016/j.biortech.2023. 129680

100. Effect of rice straw and its decomposed material on immobilization of cadmium in red soil by biochar. Tay Nguyen Journal of Science. 2023. 61: 58-65

101. Impact of a phosphate compound on plant metal uptake when low molecular weight organic acids are present in artificially contaminated soils. Environmental Advances. 2023. Doi:10.1016/j.envadv. 2023.100468

102. Cadmium, lead, and zinc immobilization in the soil using a phosphate compound with citric acid present. Environmental Technology. 2023. DOI: 10.1080/09593330.2023.2298668

103. Mobilization of cadmium and arsenic during anoxic-oxic alteration in paddy soils: a vital role of manganese. Soil and Sediment Contamination: An International Journal. 2024. DOI: 10.1080/15320383.2024.2306159

104. Nitrate reduction coupling with As(III) oxidation in neutral As-contaminated paddy soil preserves nitrogen, reduces N2O emissions and alleviates As toxicity. The Sci of Total Environ. 2024. 912, 169360. DOI: 10.1016/j.scitotenv.2023.169360

105. Role of genes encoding microbial carbohydrate-active enzymes in the accumulation and dynamics of organic carbon in subtropical forest soils. Science of the Total Environment. 2024. 170295. DOI: 10.1016/j.scitotenv.2024.170295

106. Sulfur enhances iron plaque formation and stress resistance to reduce the transfer of Cd and As in the soil-rice system, Science of the Total Environment. 2024, https://doi.org/10.1016/j.scitotenv. 2024.171689

107. Role of minerals in regulating the mineralization of cover crop residue and native organic matter and the community and necromass of microbes in flooded paddy soils. Plant and Soil, 2024. DOI: 10.1007/s11104-024-06593-y

108. Mechanisms of metal immobilization in the soil by a phosphate compound with low molecular weight organic acids present. Communications in Soil Science and Plant Analysis. 2024. https://doi.org/10.1080/00103624.2024.2362224

109. Iron minerals enhance Fe(II)-mediated abiotic As(III) oxidation. Chemosphere, 2024. 363 (2024), 142913. https://doi.org/10.1016/ j.chemosphere.2024.142913

110. Goethite promoted N2O emissions via increasing autotrophic nitrification dominated by ammonia oxidizing bacteria in paddy soils. Applied Soil Ecology. 2024. 201, DOI: 10.1016/j.apsoil.2024.105479

111. Combined application of biochar and calcium superphosphate can effectively immobilize cadmium and reduce its uptake by cabbage. AGRONOMY- BASEL. 2024. 14(11): 14112538. DOI: 10.3390/agronomy14112538

112. Regulation of fertilization on the genes encoding microbial carbohydrate-active enzymes and their roles in accumulating and decomposing organic carbon in Ultisol. Applied Soil Ecology, 2025. 206, 105894

113. Impact of citric acid on cadmium immobilization in soil amended with biochar. Journal of Environmental Sciences. 2025. Doi: 10.1016/j.jes.2025.03.005

114. Machine learning prediction for the removal of As and Cd from co-contaminated water by iron-modified biochar from As-enriched P. vittata. Journal of Water Process Engineering. 2025. 72: 107407


发明专利

1.植酸强化联合磷肥提高蜈蚣草镉、砷富集能力的方法,ZL202210291308.1

2.促进经济作物蓖麻修复铜和镉复合污染的方法,ZL202210291311.2

3.利用富砷蜈蚣草无害化制备改性生物炭的方法及其应用,ZL202310203084.8

4.一种利用有机酸活化磷矿粉制备磷肥的方法,ZL200910272104.3


研究生培养

已毕业硕士77人(留学生2人),博士28人(留学生7人)。在读硕士生8人,博士生8人(留学生2人)。


上一篇:胡承孝

下一篇:胡荣桂